
OPIS PROGRAMU APEK AssistMP wer.5.2

- Program współpracuje z systemami pomiarowym AV32xxxx :
- Wymagany system operacyjny: WIN XP, WIN7(32/64bity) lub nowszy.
- Zalecane minimalne parametry komputera: HDD: 40GB min, Procesor z zegarem co najmniej 2GHz, Grafika SVGA 19", port USB, mysz.

<u>1. Instalacja programu i pierwsze uruchomienie.</u>

Aby zainstalować program, należy:

- Rozpakować, jeśli jest w formie *.zip.
- Skopiować cały folder np.'Pomiary32P' do c: tj. c:\ Pomiary32P lub inny podany przez producenta.
- Zmienić tryb folderu z 'tylko do odczytu' na 'normalny'.
- Umieścić skrót programów AssistMP.exe na pulpicie.

Aby usunąć program, wystarczy skasować zawartość folderu. (Program nie zmienia rejestrów systemu operacyjnego).

1.1. Pierwsza instalacja:

W przypadku USB:

Połącz komputer z systemem AV32.., kablem USB. Po pojawieniu się kreatora instalowania nowego sprzętu włóż płytę instalacyjną i wskaż kreatorowi lokalizację sterownika na płycie CD. ..\Sterowniki AV32\. Postępuj zgodnie z poleceniami kreatora. Po zainstalowaniu sterowników system jest gotowy do pracy.

W przypadku LAN i WIFI:

Należy zaprogramować w module pomiarowym adres i numer portu do komunikacji zgodnie z instrukcją systemu AV32.

Aby zmienić w programie Assist parametry opisujące komunikację urządzenia należy w zakładce [Systems] otworzyć folder z listą systemów

AV32G2No7534 IP 192.168.1.34:8011	
1 Displecement	

otworzyć programowany system do edycji, zmienić adres IP i port na poprawny następnie zapisać zmiany.

2. Konfiguracja systemu AV32xxx \ zakładka Settings.

Konfiguracja systemu **AV32xxx** obejmuje przyporządkowanie kanału programu komputerowego **k** do numeru wejścia systemu **W** oraz do konkretnego czujnika (**Rys.1**).

Rys. 1 Widok **Okna konfigurującego** \ **zakładka Setitngs** \ dla systemu **AV32AKP.**

Korzystając z zakładki Settings (Rys.2) można ustalić konfigurację systemu tzn. określić ilość mierzonych kanałów, utworzyć nową konfigurację, zapisać ją do pliku lub odczytać już istniejącą z pliku konfigurującego. Można też odczytać parametry danego czujnika w okienku Properties, zakładka Sensor lub uwagi o bezpieczeństwie pracy z czujnikiem w zakładce Care.

Rys.2. Zakładka parametrów czujników dla Okna konfigurującego.

Przykład tworzenia nowej konfiguracji takiej jak na Rys.1:

a. W zakładce **Project** kliknąć prawym klawiszem myszy, a następnie **New project**.

b. W zakładce **Project** kliknąć prawym klawiszem myszy. Po rozwinięciu się pasku, kliknąć **Add new system to project**.

c. W zakładce Systems, podświetlonej niebieskim kolorem, kliknąć dwukrotnie na wybrany system. W przypadku dodania większej ilości systemów do jednego projektu, należy powtórzyć czynności od punktu b.
d. Do usunięcia danego systemu z projektu należy nacisnąć prawy klawisz myszy, a następnie Remove system from project.

e. Do zapisu całego projektu należy kliknąć prawym klawiszem myszy, a następnie Save project lub Save project as, w przypadku gdy chcemy zapisać projekt pod inna nazwą. Jeśli w danym folderze znajduje się już jakiś projekt, to każdy kolejny należy zapisywać w innym folderze. **f.** Do otwarcia wcześniej zapisanego pliku należy w zakładce **Project** kliknąć prawym klawiszem myszy, a następnie wybrać **Open project**.

g. Kliknięciem wybrać Start edycji konfiguracji (przycisk, Enable to change settings). Podświetli się zakładka Sensors. W zakładce Project kliknąć system, który chcemy skonfigurować. Nazwa systemu pojawi się w prawym górnym rogu zakładki Settings.

h. Dla danego systemu suwakiem wybrać ilość kanałów (np.2.)

i. Wybrać numer wejścia systemu AV32AKP, na które włączony będzie czujnik ciśnienia (np.2).

j. Z okienka **System and sensors/Sensors** wybrać kliknięciem konkretny czujnik (**np.PBX100kNo7329.s002**). W **Project/Sensor** można odczytać jego parametry.

k. Kliknięciem wybrać drugi wiersz (po k2).

I. Wybrać numer wejścia systemu AV32AKP, na które włączony będzie czujnik przepływu (**np.3**).

m. Z okienka **System and sensors** wybrać kliknięciem konkretny czujnik **(np.VXD20isNo7330).** W **Properties/Sensors** można odczytać jego parametry.

n. Gdy jest odznaczone pole (Do not check if active system) okno [Option]. Należy w programie uaktywnić systemy które mają przesyłać pomiary poprzez rozwinięcie lub kliknięcie prawym klawiszem, a następnie All Active – w przypadku gdy chcemy uaktywnić wszystkie systemy.

3. Pomiary statyczne systemem AV32xxx\ zakładka Static test.

W okienku **Settings** można ustawić częstość wolnych pomiarów statycznych. Po przesłaniu konfiguracji do systemu **AV32** (klawisz **Connected**) można wcisnąć klawisz **Jeden pomiar** lub **Monitorowanie** tzn. rozpocząć rejestrację pomiarów statycznych na wykresie w postaci pojedynczych punktów pomiarowych oraz zapis do pliku o nazwie zapisanej w okienku **File name**.

Rys. 3 Zakładka Static Test dla systemu AV32AKP.

4. Pomiary systemem AV32 \ zakładka Dynamic measurement.

Po przesłaniu konfiguracji do systemu AV32 (klawisz Connected) można wcisnąć klawisz START tzn. rozpocząć rejestrację bieżących pomiarów na wykresie (patrz Rys.4 - wybór kanałów patrz Rys.5) oraz zapis do pliku o nazwie zapisanej w okienku File name.

W celu przerwania archiwizacji pomiarów w pliku należy wcisnąć klawisz **Records.** W okienku **File properties** pokazana jest data i godzina początku zapisu do pliku archiwizującego. Do pliku zapisywane będą pomiary ze wszystkich kanałów wyszczególnionych w konfiguracji systemu.

Dodatkowo można umieścić tam swoje uwagi dotyczące pomiaru w okienku Note.

Rys. 4 Widok **Oknapomiarowego** \ **zakładka Dynamic measurement** dla systemu **AV32AKP**.

W **Polu wykresu** (patrz **Rys.5**) przełączając wyróżnione klawisze można oglądać pomiary na bieżąco (w czasie rzeczywistym) lub dane pomiarowe już zapisane w pliku archiwalnym. Przeglądanie pliku nie zaburza zapisu do bieżącego pliku archiwalnego.

W okienku **Chart properties** można wybrać, które kanały będą prezentowane w **Polu wykresu**. Maksymalnie można przedstawić 4 wykresy różniące się kolorami. Wykresom tym należy przyporządkować numer kanału

Rys. 5 Widok Okna pomiarowego \ zakładka Dymamic measurement\ oraz okienka właściwości wykresu (Chart properties).

(korzystając ze strzałek lub wpisując wybrany numer). Wpisanie zera wyłącza dany wykres. W okienku możemy ustawić domyślne granice wykresu. Poza tym kolumna **OLF (Online_Filter)** umożliwia włączenie lub wyłączenie filtrów programowych (on line) dla wykresu danego kanału, a kolumna **PR (Peak_Reducer)** włączenie lub wyłączenie funkcji eliminacji pojedynczych zakłóceń pomiarowych.

W okienku Filtr properties (Rys. 6) należy ustawić górną częstotliwość programowych filtrów dolnoprzepustowych ułatwiających usunięcie szumów i zakłóceń na wykresie prezentowanym w Polu wykresu. W ostatnim okienku na Rys.6 po wciśnięciu klawisza Frequency 1 wyświetli się dominująca (energetycznie) częstość dla danego pomiaru.

Filtr dotyczy tylko wyświetlanych wartości, do pliku zapisują się pełna informacja o pomiarze. Aby otrzymać odfiltrowany sygnał z plików dyskowych, należy włączyć filtry podczas wprowadzania pomiarów z plików. W plikach dyskowych zapisują się podstawowe informacje o konfiguracji systemu dla danego pomiaru. Należy zaznaczyć interesujący nas plik wcisnąć prawy klawisz i z rozwiniętego menu wybrać [Measure properties].

4.1 Algorytm pomiarów dynamicznych z systemem AV32AKP.

Kolejność postępowania przy pierwszym pomiarze:

- Podłącz zasilacz do systemu AV32. Nie dotyczy systemów zasilanych USB.
- Dodłącz kabel komunikacyjny USB do komputera i systemu AV32.
- Uruchom program PrezenterAsistMP.
- Sprawdź konfigurację w zakładce Settings.
- W zakładce Dynamic measurement prześlij konfigurację do systemu (klawisz Connected . (Dioda w systemie AV32 powinna mignąć dwa razy.)
- Wybierz kanały prezentowane na wykresie (okienko Chart properties)
- Wciśnij klawisz START .

Uwaga: W przypadku niewpisania nazwy pliku pomiarowego program zapisze pomiary w pliku o nazwie utworzonej z daty i godziny pomiaru.

5. Pole wykresu.

Edycję **Pola wykresu** dla pomiarów zarejestrowanych w wybranym pliku umożliwiają klawisze opisane na **Rys.7**.

Rys. 7 Edycja Pola wykresu.

Po wciśnięciu klawisza **Pomiary z pliku** można przeglądać zapisane dane korzystając z dwóch suwaków:

lewy suwak (File pointer) – przesuwanie wykresu (w osi czasu); **prawy suwak (Bufor lenght)**– zwiększanie/zmniejszanie zakresu wykresu (w ramach zadeklarowanej wielkości bufora danych – patrz **Rys.8**).

Po wciśnięciu klawisza **Options** w zakładce **Chart** można zdefiniować rozmiar oglądanego bufora oraz częstość odświeżania obrazu na wykresie. W zakładce **Measure** (**Rys.9**) można zdefiniować częstość pomiaru oraz ewentualnie ilość wykonywanych i zapisywanych pomiarów. Wpisanie zera w okienku **counter** jest równoznaczne z nieprzerwanym zapisem pomiarów.

Chart: Measure:		
Chart buffer		
Bufor size: 5000	Maximum size. 20000	
Freq. refresh [ms]:	Minimum size.	

Rys. 8. Zakładka **Chart** - edycji bufora wykresu.

art: Measure:		
Dynamic		
frequency [Hz]:	counter:	Bufor size:
500 📮	0	1000
	0 - infinite.	
Static frequency [Hz]: 500	counter:	Bufor size: 1000
Service.		Delay of conversion time:
	Do not check if active system.	

Rys.9. Zakładka Measure – definicji parametrów pomiaru.

Uwaga!

Przy korzystaniu na przemian z pomiarów dynamicznych i statycznych, należy ustawiać identyczne długości buforów.

Zmiana skali wykresu- lewy klawisz myszki.

Przesuwanie myszki ze wciśniętym jej lewym klawiszem wzdłuż osi X i Y pozwala na zmianę skali wykresu:

- przesunięcie w prawo oraz w dół (lub górę) umożliwia rozciągnięcie zaznaczonego fragmentu wykresu, na całą powierzchnię rysunku tzn. zmniejszenie skali w stopniu zależnym od wielkości zaznaczonego fragmentu.

- przesunięcie w lewo oraz w dół (lub górę) powoduje powrót do największej skali wykresu (tzn. do minimalnego rozmiaru wykresu) niezależnie od wielkości zaznaczonego fragmentu.

 przesunięcie poza okienko programu w prawo albo w dół pulpitu) umożliwia zwiększenie skali wykresu w stopniu zależnym od wysunięcia myszki poza okienko programu.

Przesuwanie wykresu- prawy klawisz myszki .

Przesuwanie myszki ze wciśniętym jej prawym klawiszem pozwala na przesuwanie wykresu wzdłuż obu jego osi (również na część ujemną) bez zmiany skali .

Taring of sensors.		
Status:		
Connecting. Connected. Start measurement. Measurement.		• ОК
	Ca	ncel Set zero Set default
k W: Sensor	s: Tare value	Note:
k1 1 MT16VTP_7491P1.s	001 0.0	Czujnik cisnienia MT 0-40[bar]
k2 2 MT16VP_7491P2.s	0.0	Czujnik cisnienia MT 0-40[bar]
k3 3 MT16VP_7491P3.s	0.0	Czujnik cisnienia MT 0-40[bar]
k4 4 MT16P40_7491_4.s	0.0	Czujnik cisnienia MT 0-40[bar]
k5 5 MT16P40_7491_5.s	0.0	Czujnik cisnienia MT 0-40[bar]
k6 6 MT16P40_7491_6.s	0.0	Czujnik cisnienia MT 0-40[bar]
k7 7 MT16P40_7491_7.s	0.0	Czujnik cisnienia MT 0-40[bar]
k8 8 MT16P40_7491_8.s	001 -9.434	Czujnik cisnienia MT 0-40[bar]
k9 9 MT16P40_7491_9.s	001 -9.936	Czujnik cisnienia MT 0-40[bar]
k10 10 MT16VTP_7491Q1.s	0.0	Czujnik przepływu do 200[1/min]
k11 11 MT16VP_7491Q2.s	0.0	Czujnik przepływu do 200[l/min]
k12 12 MT16VP_7491Q3.s	001 0.0	Czujnik przepływu do 200[1/min]
k13 13 RF-DUIN_7411_10.s k14 14 MT16VTP_7491T1.s	001 0.0 001 -111.95	Czujnik obrotów do 2000[obr/min] Czujnik temperatury 0-130[°C]

6. Tarowanie (zerowanie) czujników.

Przed tarowaniem należy zadać wartość zerową wszystkim tarowanym czujnikom. Wcisnąć przycisk [Taring of sensors] z menu w zakładce [settings]. Zaznaczyć czujniki do tarowania i wcisnąć przycisk [Taring of sensors]. Tylko czujniki, które mają właściwość "Tare", mogą być tarowane.

Dodatkowo datę i godzina ostatniego tarowania można przeczytać we właściwościach czujnika tj. "TareTime".

7.Dedykowane programy do obsługi aplikacji pomiarowych.

Gdy w folderze programu AssistMP znajduje się dedykowany program prezentacji pomiarów, w menu głównym wyświetla się dodatkowa ikona.

Uruchomienie dedykowanego programu.

Po uruchomieniu pomiarów wciskamy powyższą ikonę w celu uruchomienia programu. W czasie pracy dodatkowego programu można zamknąć program AssistMP, zamknięcie programu odciąża system operacyjny, jednak nie możemy zmieniać parametrów pomiaru.

8. Aktualizacja oprogramowania. (Komputer podłączony do internetu).

Aktualizację oprogramowania możemy wykonać, wciskając klawisz [Help]. Wciśnięcie napisu [->Latest version] wyświetli najnowszą dostępną wersję. Porównaj wersje programu. Wersja nowsza, gdy wyświetlone liczby oddzielone kropkami są większe od podanej wersji przy nazwie programu. Wciśnięcie napisu [->Download latest version.] rozpocznie aktualizowanie oprogramowania. Zakończenie aktualizacji jest sygnalizowane napisem [Download: OK!]. Teraz wystarczy zamknąć i uruchomić ponownie już nową wersje programu.

APEK 02-804 WARSZAWA ul. Gżegżółki 7 e-mail: biuro@apek.pl http://www.apek.pl